Опыты птолемея по преломлению света. Особенности явления преломления света с точки зрения физики Преломление света в стакане с водой

Греческий астроном Клавдий Птолемей (около 130 г. н. э.) – автор замечательной книги, которая в течение почти 15 столетий служила основным учебником по астрономии. Однако кроме астрономического учебника Птолемей написал ещё книгу «Оптика», в которой изложил теорию зрения, теорию плоских и сферических зеркал и исследование явления преломления света. С явлением преломления света Птолемей столкнулся, наблюдая звёзды. Он заметил, что луч света, переходя из одной среды в другую, «ломается». Поэтому звёздный луч, проходя через земную атмосферу, доходит до поверхности Земли не по прямой, а по кривой линии, то есть происходит рефракция. Искривление хода луча происходит из-за того, что плотность воздуха меняется с высотой.

Чтобы изучить закон преломления, Птолемей провёл следующий эксперимент. Он взял круг и укрепил на оси линейки l 1 и l 2 так, чтобы они могли свободно вращаться вокруг неё (см. рисунок). Птолемей погружал этот круг в воду до диаметра АВ и, поворачивая нижнюю линейку, добивался того, чтобы линейки лежали для глаза на одной прямой (если смотреть вдоль верхней линейки). После этого он вынимал круг из воды и сравнивал углы падения α и преломления β. Он измерял углы с точностью до 0,5°. Числа, полученные Птолемеем, представлены в таблице.

Птолемей не нашел «формулы» взаимосвязи для этих двух рядов чисел. Однако если определить синусы этих углов, то окажется, что отношение синусов выражается практически одним и тем же числом, даже при таком грубом измерении углов, к которому прибегал Птолемей.

    • Задание №161772

Под рефракцией в тексте понимается явление

изменения направления распространения светового луча из-за отражения на границе атмосферы

изменения направления распространения светового луча из-за преломления в атмосфере Земли

поглощения света при его распространении в атмосфере Земли

огибания световым лучом препятствий и тем самым отклонения от прямолинейного распространения

    • Задание №90B309

В спокойной атмосфере наблюдают положение звёзд, не находящихся на перпендикуляре к поверхности Земли в той точке, где находится наблюдатель. Каково видимое положение звёзд – выше или ниже их действительного положения относительно горизонта? Ответ поясните.

    • Задание №DCF7E6

Какой из приведённых ниже выводов противоречит опытам Птолемея?

угол преломления меньше угла падения при переходе луча из воздуха в воду

с увеличением угла падения линейно увеличивается угол преломления

отношение синуса угла падения к синусу угла преломления не меняется

синус угла преломления линейно зависит от синуса угла падения

    • Задание №EEB9E2

Из-за рефракции света в спокойной атмосфере кажущееся положение звезд на небосклоне относительно горизонта

выше действительного положения

ниже действительного положения

сдвинуто в ту или иную сторону по вертикали относительно действительного положения

совпадает с действительным положением

Полярные сияния

Хорошо известно, что в местах земного шара, расположенных за северным или южным Полярным кругом, во время полярной ночи на небе вспыхивает свечение разнообразной окраски и формы. Это и есть полярное сияние. Иногда оно имеет вид однородной дуги, неподвижной или пульсирующей, иногда как бы состоит из множества лучей разной длины, которые переливаются, свиваются в виде лент и т.п. Цвет этого свечения желтовато-зеленый, красный, серо-фиолетовый. Долгое время природа и происхождение полярных сияний оставались загадочными, и только недавно они были объяснены. Удалось установить, что полярные сияния возникают на высоте от 80 до 1000 км над землей, чаще всего – на высоте около 100 км. Дальше было выяснено, что полярные сияния представляют собой свечение разреженных газов земной атмосферы.

Была замечена связь между полярными сияниями и рядом других явлений. Многолетние наблюдения показали, что периоды максимальной частоты полярных сияний регулярно повторяются через промежутки в 11,5 лет. В течение каждого такого промежутка времени число полярных сияний сначала от года к году убывает, а затем начинает возрастать, через 11,5 лет достигая максимума.

Оказалось, что также периодически, с периодом 11,5 лет, меняются форма и положение темных пятен на солнечном диске. При этом в годы максимума солнечных пятен, или, как говорят, в годы максимальной солнечной активности, максимума достигает и число полярных сияний. Такую же периодичность имеет изменение числа магнитных бурь, их количество тоже достигает максимума в годы с наибольшей солнечной активностью.

Сопоставляя эти факты, ученые пришли к выводу, что пятна на Солнце являются теми местами, откуда с огромной скоростью выбрасываются в пространство потоки заряженных частиц – электронов. Попадая в верхние слои нашей атмосферы, электроны, обладающие большой энергией, ионизируют составляющие ее газы и заставляют их светиться.

Эти же электроны оказывают влияние на магнитное поле Земли. Заряженные частицы, испускаемые Солнцем, подходя к Земле, попадают в земное магнитное поле. На движущиеся в магнитном поле электроны действует сила Лоренца, которая отклоняет их от первоначального направления движения. Было показано, что заряженные частицы, отклоняемые магнитным полем Земли, могут попадать только в приполярные области земного шара. Эта теория хорошо согласуется с большим числом фактов и является в настоящее время общепринятой.

    • Задание №16D4EC

Что такое полярное сияние?

электрический разряд в атмосфере

электрический ток в электролите, которым является влажный воздух

свечение разреженных газов земной атмосферы

излучение энергии Солнцем

    • Задание №AFAFAB

Почему полярные сияния наблюдаются в приполярных областях?

А. Заряженные частицы так отклоняются магнитным полем Земли, что могут попадать только в приполярные области Земли.

Б. Атмосфера в приполярных областях наиболее разрежена, и электроны до столкновения с молекулами могут приобрести достаточно большую энергию.

Правильным ответом является

ни А, ни Б

    • Задание №E3C44B Отложить Пометить как решённое

Какова природа полярных сияний?

ионизация быстрыми электронами молекул газов, входящих в состав воздуха

свечение газов, ежесекундно выбрасываемых Солнцем в пространство между планетами

свечение быстрых электронов, выбрасываемых Солнцем

свечение восходящих от земли потоков воздуха

Маскировка и демаскировка

Цвет различных предметов, освещённых одним и тем же источником света (например, Солнцем), бывает весьма разнообразен. При рассмотрении непрозрачного предмета мы воспринимаем его цвет в зависимости от того излучения, которое отражается от поверхности предмета и попадает к нам в глаза.

Доля светового потока, отражённого от поверхности тела, характеризуется коэффициентом отражения ρ. Тела белого цвета отражают всё падающее на них излучение (коэффициент отражения ρблизок к единице для всех длин волн), тела чёрного цвета поглощают всё падающее на них излучение (коэффициент отражения ρравен практически нулю для всех длин волн). Коэффициент отражения может зависеть от длины волны, благодаря чему и возникают разнообразные цвета окружающих нас тел.

Предмет, у которого коэффициент отражения имеет для всех длин волн практически те же значения, что и окружающий фон, становится неразличимым даже при ярком освещении. В природе в процессе естественного отбора многие животные приобрели защитную окраску (мимикрия).

Этим пользуются также в военном деле для цветовой маскировки войск и военных объектов. Практически трудно достичь того, чтобы для всех длин волн коэффициенты отражения предмета и фона совпадали. Человеческий глаз наиболее чувствителен к жёлто-зелёной части спектра, поэтому при маскировке пытаются достичь равенства коэффициентов отражения прежде всего для этой части спектра. Однако если замаскированные с таким расчётом объекты не наблюдать глазом, а фотографировать, то маскировка может утратить своё значение. Действительно, на фотографическую пластину особенно сильно действует фиолетовое и ультрафиолетовое излучение. Несовершенство маскировки отчётливо скажется также в том случае, если вести наблюдение через светофильтр, практически устраняющий те длины волн, на которые маскировка рассчитана.

Задание №B9EC71

Какого цвета будет казаться зелёная трава, рассматриваемая через красный фильтр? Ответ поясните.


Похожая информация.


Греческий астроном Клавдий Птолемей (около 130 г. н. э.) – автор замечательной книги, которая в течение почти 15 столетий служила основным учебником по астрономии. Однако кроме астрономического учебника Птолемей написал ещё книгу «Оптика», в которой изложил теорию зрения, теорию плоских и сферических зеркал и исследование явления преломления света. С явлением преломления света Птолемей столкнулся, наблюдая звёзды. Он заметил, что луч света, переходя из одной среды в другую, «ломается». Поэтому звёздный луч, проходя через земную атмосферу, доходит до поверхности Земли не по прямой, а по кривой линии, то есть происходит рефракция. Искривление хода луча происходит из-за того, что плотность воздуха меняется с высотой.

Чтобы изучить закон преломления, Птолемей провёл следующий эксперимент. Он взял круг и укрепил на оси линейки l1 и l2 так, чтобы они могли свободно вращаться вокруг неё (см. рисунок). Птолемей погружал этот круг в воду до диаметра АВ и, поворачивая нижнюю линейку, добивался того, чтобы линейки лежали для глаза на одной прямой (если смотреть вдоль верхней линейки). После этого он вынимал круг из воды и сравнивал углы падения α и преломления β. Он измерял углы с точностью до 0,5°. Числа, полученные Птолемеем, представлены в таблице.

Птолемей не нашёл «формулы» взаимосвязи для этих двух рядов чисел. Однако если определить синусы этих углов, то окажется, что отношение синусов выражается практически одним и тем же числом, даже при таком грубом измерении углов, к которому прибегал Птолемей.

Из-за рефракции света в спокойной атмосфере кажущееся положение звезд на небосклоне относительно горизонта

1) выше действительного положения

2) ниже действительного положения

3) сдвинуто в ту или иную сторону по вертикали относительно действительного положения

4) совпадает с действительным положением

Конец формы

Начало формы

В спокойной атмосфере наблюдают положение звёзд, не находящихся на перпендикуляре к поверхности Земли в той точке, где находится наблюдатель. Каково видимое положение звёзд – выше или ниже их действительного положения относительно горизонта? Ответ поясните.

Конец формы

Начало формы

Под рефракцией в тексте понимается явление

1) изменения направления распространения светового луча из-за отражения на границе атмосферы

2) изменения направления распространения светового луча из-за преломления в атмосфере Земли

3) поглощения света при его распространении в атмосфере Земли

4) огибания световым лучом препятствий и тем самым отклонения о прямолинейного распространения

Конец формы

Начало формы

Какой из приведённых ниже выводов противоречит опытам Птолемея?

1) угол преломления меньше угла падения при переходе луча из воздуха в воду

2) с увеличением угла падения линейно увеличивается угол преломления

3) отношение синуса угла падения к синусу угла преломления не меняется

4) синус угла преломления линейно зависит от синуса угла падения

Конец формы

Конец формы

Конец формы

Фотолюминесценция

Некоторые вещества при освещении электромагнитным излучением сами начинают светиться. Такое свечение, или люминесценция, отличается важной особенностью: свет люминесценции имеет иной спектральный состав, чем свет, вызвавший свечение. Наблюдения показывают, что свет люминесценции характеризуется большей длиной волны, чем возбуждающий свет. Например, если пучок фиолетового света направить на колбочку с раствором флюоресцеина, то освещённая жидкость начинает ярко люминесцировать зелёно-жёлтым светом.

Некоторые тела сохраняют способность светиться некоторое время после того, как освещение их прекратилось. Такое послесвечение может иметь различную длительность: от долей секунды до многих часов. Принято называть свечение, прекращающееся с освещением, флюоресценцией, а свечение, имеющее заметную длительность, фосфоресценцией.

Фосфоресцирующие кристаллические порошки используются для покрытия специальных экранов, сохраняющих своё свечение две-три минуты после освещения. Такие экраны светятся и под действием рентгеновских лучей.

Очень важное применение нашли фосфоресцирующие порошки при изготовлении ламп дневного света. В газоразрядных лампах, наполненных парами ртути, при прохождении электрического тока возникает ультрафиолетовое излучение. Советский физик С.И. Вавилов предложил покрывать внутреннюю поверхность таких ламп специально изготовленным фосфоресцирующим составом, дающим при облучении ультрафиолетом видимый свет. Подбирая состав фосфоресцирующего вещества, можно получить спектральный состав излучаемого света, максимально приближённый к спектральному составу дневного света.

Явление люминесценции характеризуется крайне высокой чувствительностью: достаточно иногда 10 – – 10 г светящегося вещества, например в растворе, чтобы обнаружить это вещество по характерному свечению. Это свойство лежит в основе люминесцентного анализа, который позволяет обнаружить ничтожно малые примеси и судить о загрязнениях или процессах, приводящих к изменению исходного вещества.

Ткани человека содержат большое количество разнообразных природных флуорофоров, которые имеют различные спектральные области флуоресценции. На рисунке представлены спектры свечения основных флуорофоров биологических тканей и шкала электромагнитных волн.

Согласно приведённым данным пироксидин светится

1) красным светом

2) жёлтым светом

3) зелёным светом

4) фиолетовым светом

Конец формы

Начало формы

Два одинаковых кристалла, имеющих свойство фосфоресцировать в жёлтой части спектра, были предварительно освещены: первый красными лучами, второй синими лучами. Для какого из кристаллов можно будет наблюдать послесвечение? Ответ поясните.

Конец формы

Начало формы

При исследовании пищевых продуктов люминесцентный метод можно использовать для установления порчи и фальсификации продуктов.
В таблице приведены показатели люминесценции жиров.

Цвет люминесценции сливочного масла изменился с жёлто-зелёного на голубой. Это означает, что в сливочное масло могли добавить

1) только маргарин сливочный

2) только маргарин «Экстра»

3) только сало растительное

4) любой из указанных жиров

Конец формы


Альбедо Земли

Температура у поверхности Земли зависит от отражательной способности планеты – альбедо. Альбедо поверхности – это отношение потока энергии отражённых солнечных лучей к потоку энергии падающих на поверхность солнечных лучей, выраженное в процентах или долях единицы. Альбедо Земли в видимой части спектра – около 40%. В отсутствие облаков оно было бы около 15%.

Альбедо зависит от многих факторов: наличия и состояния облачности, изменения ледников, времени года, и, соответственно, от осадков.

В 90-х годах XX века стала очевидна значительная роль аэрозолей – «облаков» мельчайших твёрдых и жидких частиц в атмосфере. При сжигании топлива в воздух попадают газообразные оксиды серы и азота; соединяясь в атмосфере с капельками воды, они образуют серную, азотную кислоты и аммиак, которые превращаются потом в сульфатный и нитратный аэрозоли. Аэрозоли не только отражают солнечный свет, не пропуская его к поверхности Земли. Аэрозольные частицы служат ядрами конденсации атмосферной влаги при образовании облаков и тем самым способствуют увеличению облачности. А это, в свою очередь, уменьшает приток солнечного тепла к земной поверхности.

Прозрачность для солнечных лучей в нижних слоях земной атмосферы зависит также от пожаров. Из-за пожаров в атмосферу поднимается пыль и сажа, которые плотным экраном закрывают Землю и увеличивают альбедо поверхности.

Какие утверждения справедливы?

А. Аэрозоли отражают солнечный свет и, тем самым, способствуют уменьшению альбедо Земли.

Б. Извержения вулканов способствуют увеличению альбедо Земли.

1) только А

2) только Б

3) и А, и Б

4) ни А, ни Б

Конец формы

Начало формы

В таблице приведены некоторые характеристики для планет Солнечной системы – Венеры и Марса. Известно, что альбедо Венеры А 1 = 0,76, а альбедо Марса А 2 = 0,15. Какая из характеристик, главным образом, повлияла на различие в альбедо планет?

1) А 2) Б 3) В 4) Г

Конец формы

Начало формы

Увеличивается или уменьшается альбедо Земли в период извержения вулканов? Ответ поясните.

Конец формы

Начало формы

Под альбедо поверхности понимают

1) общий поток падающих на поверхность Земли солнечных лучей

2) отношение потока энергии отражённого излучения к потоку поглощённого излучения

3) отношение потока энергии отражённого излучения к потоку падающего излучения

4) разность между падающей и отражённой энергией излучения

Конец формы

Изучение спектров

Все нагретые тела излучают электромагнитные волны. Чтобы экспериментально исследовать зависимость интенсивности излучения от длины волны, необходимо:

1) разложить излучение в спектр;

2) измерить распределение энергии в спектре.

Для получения и исследования спектров служат спектральные аппараты – спектрографы. Схема призменного спектрографа представлена на рисунке. Исследуемое излучение поступает сначала в трубу, на одном конце которой имеется ширма с узкой щелью, а на другом – собирающая линза L 1 . Щель находится в фокусе линзы. Поэтому расходящийся световой пучок, попадающий на линзу из щели, выходит из неё параллельным пучком и падает на призму Р .

Так как разным частотам соответствуют различные показатели преломления, то из призмы выходят параллельные пучки разного цвета, не совпадающие по направлению. Они падают на линзу L 2 . На фокусном расстоянии от этой линзы располагается экран, матовое стекло или фотопластинка. Линза L 2 фокусирует параллельные пучки лучей на экране, и вместо одного изображения щели получается целый ряд изображений. Каждой частоте (точнее, узкому спектральному интервалу) соответствует своё изображение в виде цветной полоски. Все эти изображения вместе
и образуют спектр.

Энергия излучения вызывает нагревание тела, поэтому достаточно измерить температуру тела и по ней судить о количестве поглощённой в единицу времени энергии. В качестве чувствительного элемента можно взять тонкую металлическую пластину, покрытую тонким слоем сажи, и по нагреванию пластины судить об энергии излучения в данной части спектра.

Разложение света в спектр в аппарате, изображённом на рисунке, основано на

1) явлении дисперсии света

2) явлении отражения света

3) явлении поглощения света

4) свойствах тонкой линзы

Конец формы

Начало формы

В устройстве призменного спектрографа линза L 2 (см. рисунок) служит для

1) разложения света в спектр

2) фокусировки лучей определённой частоты в узкую полоску на экране

3) определения интенсивности излучения в различных частях спектра

4) преобразования расходящегося светового пучка в параллельные лучи

Конец формы

Начало формы

Нужно ли металлическую пластину термометра, используемого в спектрографе, покрывать слоем сажи? Ответ поясните.


Конец формы

Начало формы

Выпуск 3

В видеоуроке физики от Академии занимательных наук профессор Даниил Эдисонович продолжает начатый в предыдущей серии передачи разговор о свете. Что такое отражение света телезрители уже знают, а вот что такое преломление света? Именно преломлением света объясняются некоторые странные оптические явления, которые мы можем наблюдать в нашей повседневной жизни.

Явление преломления света

Почему ноги стоящих в воде людей кажутся короче, чем на самом деле, а если посмотреть на дно реки, то оно кажется ближе? Всё дело в явлении преломления света. Свет всегда старается двигаться по прямой линии, кратчайшим путём. Но попадая из одной физической среды в другую часть солнечных лучей меняет направление. В этом случае мы имеем дело с явлением преломления света. Именно поэтому ложка в стакане с чаем кажется сломанной — свет от части ложки, которая в чае, достигает наших глаз под другим углом, чем свет от части ложки, которая находится над поверхностью жидкости. Преломление света в данном случае происходит на границе воздуха с водой. При отражении луч света движется самым коротким путём, а при преломлении — самым быстрым. Используя законы отражения и преломления света, люди создали множество вещей, без которых сегодня наша жизнь немыслима. Телескопы, перископы, микроскопы, увеличительные стёкла, всё это было бы невозможно создать без знания законов преломления и отражения света. Увеличительное стекло увеличивает потому, что пройдя через него, лучи света попадают в глаз под углом большим, чем лучи, отражённые от самого предмета. Для этого предмет нужно расположить между лупой и её оптическим фокусом. Оптический фокус; это точка, в которой пересекаются (фокусируются) первоначально параллельные лучи после прохождения через собирающую систему (либо где пересекаются их продолжения, если система рассеивающая). У линзы (например, линзы очков) есть две стороны, поэтому луч света преломляется дважды — входя и выходя из линзы. Поверхность линзы может быть выгнутой, вогнутой или плоской, что определяет, каким именно образом в ней произойдёт явление преломления света. Если у линзы обе стороны выпуклые — это собирательная линза. Преломляясь в такой линзе, лучи света собираются в одной точке. Она называется главным фокусом линзы. Линза с вогнутыми сторонами называется рассеивающей. На первый взгляд она лишена фокуса, ведь лучи, проходя через неё, рассеиваются, расходятся в стороны. Но если мы перенаправим эти лучи обратно, то они, вновь пройдя через линзу, соберутся в точке, которая и будет фокусом этой линзы. Есть линза и в глазу человека, она называется хрусталиком. Его можно сравнить с кинопроектором, который проецирует картинку на экран — заднюю стенку глаза (сетчатку). Вот и получается, что озеро — это гигантская линза, вызывающая явление преломления света. Потому и кажутся короткими ноги у стоящих в нём рыбаков. Радуга тоже появляется на небе из-за линз. В их роли выступают мельчайшие капельки воды или частицы снега. Радуга возникает из-за того, что солнечный свет преломляется и отражается капельками воды (дождя или тумана), парящими в атмосфере. Эти капельки по-разному отклоняют свет разных цветов. В результате белый свет разлагается в спектр (происходит дисперсия света). Наблюдатель, который стоит спиной к источнику света, видит разноцветное свечение, которое исходит из пространства по окружностям (дугам).

Вариант 1. Оборудование: прибор для изучения законов геометрической оптики, выпрямитель ВС-24 или ВС 4-12, плоское зеркало из деталей прибора.

При подготовке прибора по геометрической оптике к работе регулируют освещение экрана. Для этого ослабляют шаровой шарнир и поворачивают или смещают осветитель до тех пор, пока средняя полоска света не пройдет через весь экран (по его диаметру). В этом положении осветитель закрепляют. Если же при этом полоска света будет расплывчатой, не резкой, то, отпустив винт, фиксирующий электропатрон в осветителе, вращают, опускают или поднимают электропатрон до получения четкой полоски света на экране. Если боковые полоски света не доходят до края экрана, то следует изменить наклон осветителя. После наладки все винты надежно закрепляют.

Установку собирают по рисунку 278. С помощью прижима ус­танавливают плоское зеркало из набора оптических деталей так, чтобы его отражающая поверхность совпадала с горизонтальной осью. Оставляют лишь один средний луч. Изменяют угол паде­ния от 0 до 90°, отмечают угол отражения, сравнивают эти углы, делают вывод.

Повторяют опыт, демонстрируя свойства обратимости световых пучков, для чего переводят осветитель из одной части диска в дру­гую. (При демонстрации опытов по геометрической оптике поме­щение должно быть затемнено.)

Рис. 278 Рис. 280

Опыт 2. Преломления света

Вариант 1. Оборудование:

На экране устанавливают прозрачный полуцилиндр мато­вой стороной к экрану и плоским срезом вверх так, чтобы он со­впадал с горизонтальной осью. Центр полуцилиндра совмещают с центром экрана с помощью риски на матовой поверхности полу­цилиндра (рис. 280).

При демонстрации опыта пользуются средним лучом. Направ­ляют луч в центр полуцилиндра перпендикулярно плоскости (луч проходит без изменения направления). Отклоняют падающий луч от перпендикуляра и замечают, что преломленный луч выходит из полуцилиндра под другим углом. Сравнивают углы падения и пре­ломления, делают вывод.

Повторяют опыт при другом угле паде­ния. (Во время опыта следует обратить внимание на раздвоение пучка света на границе раздела двух сред.)

Опыт 3. Явление полного отражения света

Вариант 1. Оборудование: прибор для изучения законов геометрической оптики, выпрямитель ВС-24 или ВС 4-12, полуцилиндр из набора оптических деталей.

Обратив внимание на соотношение углов падения и преломления в предыдущем опыте (рис.280), изменяют положение полуцилиндра. Его выпуклой стороной устанавливают к осветите­лю (плоский срез совпадает с горизонтальной осью). Изменяют углы падения, сравнивают с углами преломления, делают вывод.

Сравнивают соотношение углов падения и преломления в зависимости от соотношения оптической плотности сред (результаты данного и предыдущего опытов). Делают вывод.

Убеждаются, что при увеличении угла падения яр­кость отраженного пучка возрастает, а преломленного - уменьша­ется. Увеличивают угол падения до тех пор, пока преломленный луч не исчезнет. При дальнейшем увеличении угла падения будет на­блюдаться только отраженный луч. Наблюдают явление полного отра­жения света.

Вопрос. Чему равен предельный угол полного отражения? (Ответ дайте с одной значащей цифрой.)

Вариант 2. Оборудование: проекционный аппарат, аквариум.

Установку собирают по рисун­ку 281. В стеклянную ванну (аквариум) наливают слой воды толщиной 7-8 см и подкрашивают ее хвойным концентратом. Перед конденсором проекционного ап­парата устанавливают горизонтальную щель, а на оправу объек­тива надевают плоское зеркало. Направляют пучок света на бо­ковую стенку стеклянной ванны. Наблюдают преломление пучка света в воде, полное отражение от поверхности воды и преломление при выходе пучка из ванны. Изменяя угол падения, можно наблюдать многократное полное отражение пучка света от по­верхности воды и дна ванны.

Внимание! Администрация сайта сайт не несет ответственности за содержание методических разработок, а также за соответствие разработки ФГОС.

  • Участник:Максимова Анна Алексеевна
  • Руководитель:Гусарова Ирина Викторовна

Цель работы – изучить световые явления и свойства света на опытах, рассмотреть три основных свойства света: прямолинейность распространения, отражение и преломление света в разных по плотности средах.

Задачи:

  1. Подготовить оборудование.
  2. Провести необходимые опыты.
  3. Проанализировать и оформить результаты.
  4. Сделать вывод.

Актуальность

В повседневной жизни мы постоянно сталкиваемся со световыми явлениями и их различными свойствами, работа многих современных механизмов и приборов также связана со свойствами света. Световые явления стали неотъемлемой частью жизни людей, поэтому их изучение актуально.

Приведённые ниже опыты объясняют такие свойства света, как прямолинейность распространения, отражение и преломление света.

Для провидения и описания опытов использовано 13-е стереотипное издание учебника А. В. Перышкина «Физика. 8 класс.» (Дрофа, 2010)

Техника безопасности

Электрические приборы, задействованные в опыте, полностью исправны, напряжение на них не превышает 1.5 В.

Оборудование устойчиво размещено на столе, рабочий порядок соблюдён.

По окончанию проведения опытов электрические приборы выключены, оборудование убрано.

Опыт 1. Прямолинейное распространение света. (стр. 149, рис. 120), (стр.149, рис. 121)

Цель опыта – доказать прямолинейность распространения световых лучей в пространстве на наглядном примере.

Прямолинейное распространение света – его свойство, с которым мы встречаемся наиболее часто. При прямолинейном распространении энергия от источника света направляется к любому предмету по прямым линиям (световым лучам), не огибая его. Этим явлением можно объяснить существование теней. Но кроме теней существуют еще и полутени, частично освещённые области. Чтобы увидеть, при каких условиях образуются тени и полутени и как при этом распространяется свет, проведём опыт.

Оборудование: непрозрачная сфера (на нити), лист бумаги, точечный источник света (карманный фонарь), непрозрачная сфера (на нити) меньше размером, для которой источник света не будет являться точечным, лист бумаги, штатив для закрепления сфер.

Ход опыта

Образование тени
  1. Расположим предметы в порядке карманный фонарь-первая сфера (закреплённая на штативе)-лист.
  2. Получим тень, отображённую на листе.

Мы видим, что результатом эксперимента стала равномерная тень. Предположим, что свет распространялся прямолинейно, тогда образование тени можно легко объяснить: свет, идущий от точечного источника по световому лучу, касающийся крайних точек сферы продолжил идти по прямой линии и за сферой, из-за чего на листе пространство за сферой не освещено.

Предположим, что свет распространялся по кривым линиям. В этом случае лучи света, искривляясь, попали бы и за сферу. Тени бы мы не увидели, но в результате проведения опыта тень появилась.

Теперь рассмотрим случай, при котором образуется полутень.

Образование тени и полутени
  1. Расположим предметы в порядке карманный фонарь-вторая сфера (закреплённая на штативе)-лист.
  2. Осветим сферу карманным фонарём.
  3. Получим тень, а также и полутень, отображённые на листе.

В этот раз результаты эксперимента – тень и полутень. Как образовалась тень уже известно из примера выше. Теперь, чтобы показать, что образование полутени не противоречит гипотезе о прямолинейном распространении света, необходимо пояснить это явление.
В этом опыте мы взяли источник света, не являющийся точечным, то есть состоящий из множества точек, по отношению к сфере, каждая из которых испускает свет во всех направлениях. Рассмотрим самую верхнюю точку источника света и световой луч, исходящий из неё к самой нижней точке сферы. Если пронаблюдать за движением луча за сферой до листа, то мы заметим, что он попадает на границу света и полутени. Лучи из подобных точек, идущие в таком направлении (от точки источника света к противоположной точке освещаемого предмета) и создают полутень. Но если рассматривать направление светового луча из выше обозначенной точки к верхней точке сферы, то будет отлично видно, как луч попадает в область полутени.

Из этого опыта мы видим, что образование полутени не противоречит прямолинейному распространению света.

Вывод

С помощью этого опыта я доказала, что свет распространяется прямолинейно, образование тени и полутени доказывает прямолинейность его распространения.

Явление в жизни

Прямолинейность распространения света широко применяется на практике. Самым простым примером является обыкновенный фонарь. Также это свойство света используется во всех устройствах, в составе которых есть лазеры: лазерные дальномеры, приспособления для резки металла, лазерные указки.

В природе свойство встречается повсеместно. Например, свет, проникающий через просветы в кроне дерева, образует хорошо различимую прямую линию, проходящую сквозь тень. Конечно, если говорить о больших масштабах, стоит упомянуть о солнечном затмении, когда луна отбрасывает тень на землю, из-за чего солнце с земли (естественно, речь идет о затененном ее участке) не видно. Если бы свет распространялся не прямолинейно, этого необычного явления не существовало бы.

Опыт 2. Закон отражения света. (с.154, рис. 129)

Цель опыта – доказать, что угол падения луча равен углу его отражения.

Отражение света также является важнейшим его свойством. Именно благодаря отражённому свету, который улавливается человеческим глазом, мы можем видеть какие-либо объекты.

По закону отражения света, лучи, падающий и отражённый, лежат в одной плоскости с перпендикуляром, проведённым к границе раздела двух сред в точке падения луча; угол падения равен углу отражения. Проверим, равны ли данные углы, на опыте, где в качестве отражающей поверхности возьмём плоское зеркало.

Оборудование: специальный прибор, представляющий собой диск с нанесённой круговой шкалой, укреплённый на подставке, в центре диска находится небольшое плоское зеркало, расположенное горизонтально (такой прибор можно изготовить в домашних условиях, используя вместо диска с круговой шкалой транспортир.), источник света – осветитель, прикреплённый к краю диска или лазерная указка, лист для нанесения измерений.

Ход опыта

  1. Расположим лист за прибором.
  2. Включим осветитель, направляя его на центр зеркала.
  3. Проведем перпендикуляр к зеркалу в точку падения луча на листе.
  4. Измерим угол падения (ﮮα).
  5. Измерим полученный угол отражения (ﮮβ).
  6. Запишем результаты.
  7. Изменим угол падения, передвигая осветитель, повторим пункты 4, 5 и 6.
  8. Сравним результаты (величину угла падения с величиной угла отражения в каждом случае).

Результаты опыта в первом случае:

∠α = 50°

∠β = 50°

∠α = ∠β

Во втором случае:

∠α = 25°

∠β = 25°

∠α = ∠β

Из опыта видно, что угол падения светового луча равен углу его отражения. Свет, попадая на зеркальную поверхность, отражается от неё под тем же углом.

Вывод

С помощью опыта и проведённых измерений я доказала, что при отражении света угол его падения равен углу отражения.

Явление в жизни

С этим явлением мы встречаемся повсеместно, так как воспринимаем глазом отражённый от предметов свет. Ярким видимым примером в природе могут служить блики яркого отражённого света на воде и на других поверхностях с хорошей отражательной способностью (поверхность поглощает меньше света чем отражает). Также, следует вспомнить солнечные зайчики, которые может пускать с помощью зеркала каждый ребёнок. Они не что иное, как отражённый от зеркала луч света.

Человек использует закон отражения света в таких приборах, как перископ, зеркальный отражатель света (к примеру, отражатель на велосипедах).

Кстати, с помощью отражения света от зеркала фокусники создавали многие иллюзии, например, иллюзию «Летающая голова». Человек помещался в ящик среди декораций так, что из ящика была видна только его голова. Стенки ящика закрывали наклонённые к декорациям зеркала, отражение от которых не давало увидеть ящик и казалось, что под головой ничего нет и она висит в воздухе. Зрелище необычное и пугающее. Фокусы с отражением имели место и в театрах, когда на сцене нужно было показать призрака. Зеркала «затуманивали» и наклоняли так, чтобы отражённый свет из ниши за сценой был виден в зрительном зале. В нише уже появлялся актёр, играющий призрака.

Опыт 3. Преломление света. (стр. 159, рис. 139)

Цель опыта - доказать, что отношение синуса угла падения к синусу угла преломления есть величина постоянная для двух сред; доказать, что угол падения светового луча (≠ 0°), идущего из менее плотной среды в более плотную, больше угла его преломления.

В жизни мы часто встречаемся с преломлением света. Например, кладя в прозрачный стакан с водой совершенно прямую ложку мы видим, что её изображение изгибается на границе двух сред (воздуха и воды), хотя на самом деле ложка остаётся прямой.

Чтобы получше рассмотреть это явление, понять, почему оно происходит и доказать закон преломления света (лучи, падающий и преломлённый, лежат в одной плоскости с перпендикуляром, проведённым к границе раздела двух сред в точке падения луча; отношение синуса угла падения к синусу угла преломления есть величина постоянная для двух сред) на примере, проведём опыт.

Оборудование: две среды разной плотности (воздух, вода), прозрачная тара для воды, источник света (лазерная указка), лист бумаги.

Ход опыта

  1. Нальём воду в тару, за ней на некотором расстоянии разместим лист.
  2. Направим луч света в воду под углом, ≠ 0°, так как при 0° преломления не происходит, а луч переходит в другую среду без изменений.
  3. Проведем перпендикуляр к границе раздела двух сред в точке падения луча.
  4. Измерим угол падения светового луча (∠α ).
  5. Измерим угол преломления светового луча (∠β ).
  6. Сравним углы, составим отношение их синусов (для нахождения синусов можно воспользоваться таблицей Брадиса).
  7. Запишем результаты.
  8. Изменим угол падения, передвигая источник света, повторим пункты 4-7.
  9. Сравним значения отношений синусов в обоих случаях.

Предположим, что световые лучи, проходя через среды разной плотности, испытывали преломление. При этом углы падения и преломления не могут быть равны, а отношения синусов этих углов не равны одному. Если преломления не произошло, то есть свет перешёл из одной среды в другую, не меняя своё направление, то данные углы будут равными (отношение синусов равных углов равно одному). Чтобы подтвердить или опровергнуть предположение, рассмотрим результаты опыта.

Результаты опыта в первом случае:

∠α = 20

∠β = 15

∠α >∠β

sin∠α = 0,34 = 1,30

sin∠β 0,26

Результаты опыта во втором случае:

∠α ˈ= 50

∠β ˈ= 35

∠α ˈ > ∠β ˈ

sin∠α ˈ= 0,77 = 1,35

sin∠β ˈ 0,57

Сравнение отношений синусов:

1,30 ~1,35 (из-за погрешностей в измерениях)

sin∠α = sin∠α ˈ = 1,3

sin∠β sin∠β ˈ

По результатам опыта при преломлении света, идущего из менее плотной среды в более плотную, угол падения больше угла преломления. отношения синусов падающих и преломлённых углов равны (но не равны одному), то есть являются постоянной величиной для двух данных сред. Направление луча при попадании в среду другой плотности изменяется из-за изменения скорости света в среде. В более плотной среде (здесь - в воде) свет распространяется медленнее, поэтому и изменяется угол прохождения света сквозь пространство.

Вывод

С помощью проведённого опыта и измерений я доказала, что при преломлении света отношение синуса угла падения к синусу угла преломления – величина постоянная для обоих сред, при прохождении световых лучей из менее плотной среды в более плотную, угол падения меньше угла преломления.

Явление в жизни

С преломлением света мы также встречаемся довольно часто, можно привести множество примеров искажения видимого изображения при прохождении сквозь воду и другие среды. Наиболее интересный пример – возникновение миража в пустыне. Мираж происходит при преломлении световых лучей, проходящих из теплых слоёв воздуха (менее плотных) в холодные слои, что нередко можно наблюдать в пустынях.

Человеком преломление света используется в различных устройствах, содержащих линзы (свет преломляется при прохождении сквозь линзу). Например, в оптических приборах, таких как бинокль, микроскоп, телескоп, в фотоаппаратах. Также человек изменяет направление света с помощью его прохождения сквозь призму, где свет преломляется несколько раз, входя и выходя из неё.

Цели работы достигнуты.

Понравилась статья? Поделитесь с друзьями!